7 research outputs found

    Modeling inspiration for innovative NPD: lessons from biomimetics

    No full text
    International audienceIn biomimetic design, nature - natural phenomena, systems or organisms - is used as a source of inspiration for producing new ideas or concepts. While being widely recommended this approach lacks rigorous analysis and manageable systematization that would be needed in industrial contexts. Better modeling of this process of bioinspiration is a condition for applying bioinspiration to stimulate innovation in a controlled way. This paper presents a model for bioinspiration based on the framework of the C-K design theory. This model was elaborated considering a review of the existing literature on methods for implementing biomimetic design and an analysis of selected biomimetic product development case examples. The results reveal the main roles of biological knowledge in the design process (1) indication of a "design direction", meaning an expansion on the concepts space, (2) indication of knowledge domains where no or few knowledge is available, (3) reorganization of the knowledge base, activating knowledge bases that would not otherwise be activated. This improved understanding of the bioinspiration process outlines more sophisticated and profound conditions that have to be managed for creating value

    Biomimétisme et véhicule décarboné : génération de concepts innovants bio-inspirés à partir de la théorie C-K

    No full text
    Le biomimétisme ou conception bio-inspirée est une approche qui propose l'utilisation du vivant en tant que source d'inspiration pour améliorer ou concevoir de nouvelles technologies. Intégrer la conception bio-inspirée au processus d'innovation des entreprises pourrait ainsi permettre la génération de concepts à la fois innovants et durables.Cette thèse, réalisée au sein de Renault avait deux objectifs: comprendre les mécanismes de la conception bio-inspirée et les appliquer à un cas concret dans l'automobile pour stimuler la génération de concepts en rupture.Pour comprendre les mécanismes de la bio-inspiration, nous nous sommes appuyés sur la littérature scientifique ainsi que sur les inventions et concepts bio-inspirés. Pour analyser le raisonnement de conception de ces exemples, nous avons choisi une théorie de la conception, la théorie C-K. Le cadre issu de la théorie C-K nous a permis de proposer un modèle général pour la conception bio-inspirée.Nous avons appliqué ce modèle au champ d'innovation du véhicule décarboné. Ce champ traite des questions liées au développement d'innovations permettant aux véhicules de réduire leur empreinte environnementale, principalement par la réduction des émissions de dioxyde de carbone (CO2), un puissant gaz à effet de serre qui contribue également au phénomène du changement climatique. L'identification des voies où la rupture serait nécessaire a débuté par la réalisation d'un arbre des concepts, à l'aide des connaissances internes disponibles en entreprise auprès des experts leaders. Un travail de réorganisation de ces concepts et la création d'une base de connaissances rassemblant articles scientifiques et expertises sur le sujet des émissions de gaz à effet de serre ont été effectués. Ce travail a permis de cartographier le champ d'innovation du véhicule décarboné. Les véhicules multi-énergies ont été la voie choisie pour la recherche de concepts bio-inspirés.Une recherche générale sur l'énergie dans le vivant nous a conduits à identifier l'énergie dans les cellules animales et particulièrement chez les humains comme une base de connaissances biologiques particulièrement intéressante. L'énergétique humaine possède un certain nombre de propriétés qui pourraient permettre une révision des connaissances sur les véhicules multi-énergie, notamment sur le stockage et la transformation d’énergie. La performance sportive humaine s'est aussi révélée être une base de connaissances intéressante par les différentes techniques utilisées pour les entrainements et en course afin de mieux mobiliser des sources d'énergie.L'application du modèle du processus de bio-inspiration avec C-K nous a conduit à formuler un concept inspiré des observations réalisées sur des coureurs pendant des courses supérieures à 1 500m. En effet, les profils de vitesse enregistrés pour des athlètes indiquent qu'une variation de vitesse est choisie par le coureur pour lui permettre de mieux utiliser ses réserves anaérobies limitées. Pour un véhicule, ceci pourrait impliquer qu'une variation de vitesse pourrait conduire à des meilleurs résultats en termes de consommation de carburant qu'une vitesse stabilisée. Ce concept a été exploré dans cette thèse à l’aide de la réalisation d'essais sur piste et des simulations avec des modèles numériques. Ces explorations montrent le potentiel de ce concept pour des véhicules conventionnels et aussi ses limitations.Ces travaux ouvrent des perspectives pour la gestion d'énergie des véhicules considérant la façon dont l'énergie est produite, stockée et utilisée chez le vivant. Les systèmes énergétiques étudiés par la physiologie humaine représentent un terrain intéressant pour le développement de véhicules adaptables à différents cas d'utilisation. De plus, l'étude du processus de la bio-inspiration a permis d'éclairer les raisons de faire appel à cette démarche et les conditions qui permettraient son application plus systématique dans les processus d'innovation en entreprise.Biologically inspired design, also called bioinspired design, biomimetics or biomimicryproposes the use of Nature, or biological knowledge, as a source of inspiration to improve orconceive new designs. Integrating the biologically inspired design approach into theinnovation process of companies could then allow the generation of more innovative and sustainable concepts.This thesis, realized during three years at a French automaker (Renault) research and development department had two objectives: to understand the mechanisms of the biologically inspired design and to apply this approach to a case belonging to an innovation field of the automotive sector.In order to understand the mechanisms of biologically inspired design we studied theliterature about bio-inspired concepts and inventions.We have chosen a design theory, the C-K theory, to analyse the design process of these literature examples. This allowed us to propose a model for bio-inspiration.We applied this model inspired by the C-K theory to the low carbon vehicle innovation field.This field includes the development of innovations allowing passenger cars to reduce theirenvironmental footprint, mainly the reduction of carbon dioxide (CO2) emissions. Thecarbon dioxide is a greenhouse gas that contributes to the climate change phenomena. Theidentification of the path where concept partitioning is required in this field began with theconstruction of a concepts space, using knowledge of company experts on the subject.Reorganizing these concepts and building a knowledge base on the strategies for CO2 emissions allowed us to map this innovation field. The vehicles with more than oneenergy source, such as electrified internal combustion engine vehicles and hybrid vehicleswere the path chosen for the research of bio-inspired concepts.A research about energy in nature led us to identify the energy in animal cells, particularlythose in humans as an interesting biological knowledge base. Human energy properties suchas cells with more than one kind of energy storage, with at least two metabolic pathways torecharge these stores are interesting to revise the knowledge about energy store andconversion in multi-energy vehicles. Besides, the human sportive performance has appearedto be an interesting knowledge base, as the training techniques and the running techniquesduring a race can influence the way athletes use their energy.These two biological bases have led us to formulate a bio-inspired concept based on therunning patterns observed in runners during races superior to 1500~m. The speed profilesrecorded show a spontaneous speed variation chosen by the runner, in order to better use itslimited anaerobic energy stores. For a vehicle, this could mean that varying its speed couldallow a lower fuel consumption than using a constant speed. This bio-inspired concept wasexplored in this thesis with the realization of tests in a dedicated test track and simulations. These tests show the potential of this concept for conventional vehicles and its limitations.This work opens the way for analysing the vehicle energetics in the light of human energetics.The versatility of human activities could help on the development of vehicles adapting todifferent use cases. Further research could also use the knowledge about the dynamic modelling of energy in vehicles to complete the empirical approaches used to model the human energy management, allowing a betteroptimization of running strategies. The study of the bio-inspiration process using a designtheory also allowed a better comprehension of the reasons for using this approach and of theconditions for successfully applying it in the innovative process of a company

    Beyond analogy: A model of bioinspiration for creative design

    No full text
    International audienceIs biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not alwaysbring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations thatare involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design?In this paper, we model the whole design process in which bioinspiration is only one element. To build this model, we use ageneral design theory, concept–knowledge theory, because it allows one to capture analogy as well as all other knowledgechanges that lead to the design of a bioinspired solution.We ground this model on well-described examples of biologicallyinspired designs available in the scientific literature. These examples include Flectofinw, a hingeless flapping mechanismconceived for fac¸ade shading, and WhalePower technology, the introduction of bumps on the leading edge of airfoils toimprove aerodynamic properties. Our modeling disentangles the analogical aspects of the biologically inspired design process,and highlights the expansions occurring in both knowledge bases, scientific (nonbiological) and biological, as well asthe impact of these expansions in the generation of new concepts (concept partitioning). This model also shows that bioinspireddesign requires a special form of collaboration between engineers and biologists. Contrasting with the classic onewaytransfer between biology and engineering that is assumed in the literature, the concept–knowledge framework showsthat these collaborations must be “mutually inspirational” because both biological and engineering knowledge expansionsare needed to reach a novel solution

    Visual Mapping for the management of an innovation field: An application to Electric Vehicle Charging in Renault

    No full text
    International audienceRadical innovation is becoming essential to insure firms stay competitive. Nevertheless, R&D departments struggle to achieve systematic innovation processes. The management of an innovation field requires adapted tools to the diversity, broadness and flexibility of the generation of innovative ideas. To face this challenge, we propose the use of a set of visual tools. These allow the abstraction of three fundamental innovation field dimensions: 1) the nonlinearity of the ideation process; 2) the degree of maturity of a technology and 3) the stakeholder diversity of an ecosystem. We propose an Innovation Map, a synthetic tool grouping several visual representations that allow describing these three dimensions of an innovation field. Having all aspects simultaneously described by a tool is enriching since it makes it possible for the visual representations to complement each other. This managerial tool was applied inside Renault, in the automobile sector, for the mapping of the electric vehicle charging, a strategic field in electric mobility. We tested the tool with several internal R&D stakeholders of the innovation field having different profiles and responsibilities. They perceived the Innovation Map as a useful tool to point out and share various strategic aspects of an innovation field, as well as establishing potential partnerships. This collaborative research is a first step towards the establishment of a visual language framework that managers can apply to communicate, organize and understand an innovation field

    Fast Computing and Approximate Fuel Consumption Modeling for Internal Combustion Engine Passenger Cars

    No full text
    International audienceThis article presents a fuel consumption model, SEFUM (Semi Empirical Fuel Use Modeling), and its comparison with three models from the literature on a 600km experimental database. This model is easy to calibrate with only a few required parameters that are provided by car manufacturers. The test database has been built from 21 drivers who drove in two conditions (normal and ecodriving) on a 15km trip. For the model evaluation, three indicators have been selected: instantaneous fuel use root mean square error, cumulated error and computation time in order to evaluate the accuracy both in cumulated and instantaneous fuel use and to estimate computation time of each model. Results tend to prove that the model is able to compute rapidly (maximum of 1500 simulated kilometers under Matlab) in comparison to all other models while ensuring a high accuracy and precision for cumulated and instantaneous fuel use

    Experimental testing and simulations of speed variations impact on fuel consumption of conventional gasoline passenger cars

    No full text
    Speed variations are considered as an alternative for reducing fuel consumption during the use phase of passenger cars. It explores vehicle engine operating zones with lower fuel consumption, thus making possible a reduction in fuel consumption when compared to constant speed operation. In this paper, we present an evaluation of two conditions of speed variations: 50–70 km/h and 90–110 km/h using numerical simulations and controlled tests. The controlled tests performed on a test track by a professional pilot show that a reduction in fuel consumption is achievable with a conventional gasoline passenger car, with no adaptations for realizing speed variations. Numerical simulations based on a backward quasi-static powertrain model are used to evaluate the potential of speed variations for reducing fuel consumption in other speed variation conditions. When deceleration is performed with gear in neutral position, simulations show that speed variations are always correlated to a lower fuel consumption. This was suspected through previous numerical tests or evaluation on test bench but not in controlled tests conditions
    corecore